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A new model for Lagrangian particle-pair separation in turbulent flows is developed
and compared with data from direct numerical simulations (DNS) of isotropic turbu-
lence. The model formulation emphasizes (i) non-Gaussian behaviour in Eulerian and
Lagrangian statistics, (ii) the occurrence of large separation velocities, (iii) the role
of straining and streaming flow structure as recognized in kinematic simulations of
turbulence, and (iv) the role of conditionally averaged accelerations in stochastic mod-
elling of turbulent relative dispersion. Previous stochastic models of relative disper-
sion have produced unrealistic behaviour, particularly in the dissipation subrange
where viscous effects are important, which have led to questions on the adequacy of
stochastic modelling. However, this failure can now be recognized as inadequate detail
in formulation, which is explained and rectified in this paper. The model is quasi-
one-dimensional in nature, and is focused on the statistics of particle-pair separation
distance and its rate of change, referred to as the separation speed. Detailed compar-
isons are presented at several Reynolds numbers using the DNS database reported
in a companion paper (Part 1). Up to fourth-order moments for these quantities are
examined, as well as the separation-distance probability density function, which is
discussed in the context of recent claims of Richardson scaling in the literature. The
model is able to account for the spatial representation of straining regions as well as
incompressibility of the flow, and is shown to reproduce strong non-Gaussianity and
intermittency in the Lagrangian separation statistics observed in DNS. Comparisons
with recent physical experiments are also remarkably consistent. This work demon-
strates that stochastic models when properly formulated are effective and efficient
representations of the dispersion process and this general class of models therefore
possess great utility for calculations of both one-particle and two-particle dispersion.
The techniques developed in this paper will facilitate such general model development.

1. Introduction
The rate at which pairs of marked particles move apart in turbulent flows plays a

fundamental role in many fluid flow problems, including concentration fluctuations
of transported passive tracers (Batchelor 1952; Durbin 1980; Sawford 1985, 2001;
Thomson 1990; Borgas & Sawford 1996), encounter rates for droplets and swimming
micro-organisms (Lewis & Pedley 2000), and the deformation of material interfaces
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(Girimaji & Pope 1990). Knowledge of the statistics of separation rate in time is
especially important in environmental applications, such as pollutant dispersion in
the atmosphere (Luhar, Hibberd & Borgas 2000; Franzese & Borgas 2002). In practice,
say for convective turbulence during daytime conditions, this usually involves complex
turbulent flows at high Reynolds number, with a wide range of time and length scales.
Such parameter and flow regimes are beyond the range of current computation, thus
environmental applications require the use of models. The class of stochastic models,
which are widely applied in pollutant dispersion, is examined in detail here.

We can simplify matters by noting that the separation rate at any instant depends
mainly on local flow conditions encountered by fluid particle pairs when they are
relatively close together. In particular, when the separation distances are small (of the
order of the Kolmogorov length scale, η) the separation process will resemble that
occurring in the idealized case of isotropic turbulence, and will be highly sensitive
to the flow structure expressed by the Eulerian statistics of velocity gradients and
two-point velocity differences. On the other hand, when the separations become
large (comparable to the integral length scale, L) the motions of separate particles
become nearly independent and easier to describe. In other words, the fundamental
phenomena of relative dispersion are small scale and generally at high Reynolds
number. The expectation of (at least approximate) small-scale universality then
suggests that a generic description may be possible in terms of appropriately scaled
variables independent of details of the large scales.

This paper is Part 2 of a coordinated effort to validate the stochastic model
description of relative dispersion in homogeneous isotropic turbulence, with the
aid of direct numerical simulation (DNS) data at several different Reynolds numbers
(Yeung & Borgas 2004, hereinafter referred to a Part 1). Special attention is paid to the
pair separation process as described by its statistics and rates of growth. Although the
flow configuration considered here is one of the simplest in turbulence, knowledge of
quantitative details about the separation process is still limited. The best source of in-
formation is from DNS with Lagrangian particle tracking (Yeung & Pope 1989; Yeung
1994; Part 1). Some information is also available from the laboratory experiments of
Ott & Mann (2000) where advanced optical techniques are used to follow particle
trajectories. The advantage of DNS is the degree of detail available and with increasing
computer power, the simulations now provide reliable data over a substantial range of
Reynolds numbers. We use recent DNS results to evaluate and suggest improvements
for the new stochastic model applied at different Reynolds numbers. Substantial
attention is paid to the relatively strong Reynolds-number dependence known for
Lagrangian statistics (see, e.g. Sawford 1991; Pope 1994; Yeung 2002).

Most stochastic models for particle-pair dispersion in the literature (Thomson 1990;
Borgas & Sawford 1994a; Pedrizzetti & Novikov 1994; Heppe 1998; Kurbanmuradov
1995; Kurbanmuradov & Sabelfeld 1995; Pedrizzetti 1999; Reynolds 1999) have used
a Langevin-type equation for particle velocities. These models assume that particle
accelerations have negligible memory, which implies that Lagrangian position and
velocity can be described by treating the latter as a Markov process (Borgas & Sawford
1994b; Sawford & Borgas 1994). However, the neglect of viscous memory effects in
these models makes them inherently incapable of describing Reynolds-number effects
in a quantitative manner. One effect of viscosity is very strong non-Gaussian particle-
pair separations, which is apparently captured well by an alternative approach, namely
kinematic simulations (Fung et al. 1992; Malik & Vassilicos 1999). In kinematic simu-
lations (KS), the instantaneous velocity field is modelled by a superposition of
random Fourier modes chosen to satisfy incompressibility and with spectral and
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spatial structure similar to real turbulence. Past difficulties in stochastic modelling
have been highlighted in some papers which advocate kinematic simulations as a
better technique (Malik & Vassilicos 1999; Flohr & Vassilicos 2000). However, here
we show that, with the aid of DNS data, these limitations are successfully overcome
by a new model that explicitly accounts for viscous dissipation range effects and
by accounting for an anomalously high probability of large-amplitude separation
velocities.

The emphasis of this paper is to demonstrate the feasibility of stochastic model
representation, not necessarily its optimality. The optimal use of stochastic models is
always thought to reside in the inertial-range of scales for larger and larger Reynolds
number. However, the need for validation of models forces the finite-Reynolds-number
dissipation-range focus. It is assumed that reliability of the demanding viscous-
range modelling will also validate modelling in the extrapolated inertial ranges. This
study therefore underpins the validity of stochastic models. Some of the techniques
introduced also have more general applications for stochastic models (quadratic-form
closures in particular), and some important insights into the Lagrangian separation
process emerge.

New applications will be developed from the framework established in this paper,
for example models for the decay of scalar variance in turbulent flows (Durbin
1982; Thomson 1990; Borgas & Sawford 1996). These applications require either
the inclusion of explicit molecular diffusion effects, extension to more complex
inhomogeneous flows, or extrapolation to the inertial-range of scales (for atmospheric
applications), all of which remain as future work. However, the framework successfully
developed in this paper can be adapted for more general purposes, including practical
applications.

In § 2, we briefly describe the mathematical background for relative dispersion, and
the rationale for a stochastic model solely for the separation distance (l) between fluid
particle pairs. Our focus is on l, and its rate of change (here called the separation
speed), instead of the orientation of the separation vector (Yeung & Borgas 1998). In
§ 3, we discuss Eulerian quantities that carry information on the local flow topology
relevant to the model formulation. Of particular importance is the Eulerian mean
acceleration conditioned on the separation speed at specified spatial separation
distance (Borgas & Yeung 1998), which is an unclosed term in the transport equation
for the probability density function (p.d.f.) for two-point velocity differences. Accurate
yet simple parameterizations of these quantities are emphasized, with some of the
details left to the Appendix. In § 4, we show how Langevin-stochastic models for
Lagrangian velocity, based on fluid-particle accelerations, are modified to account
for small-scale viscous effects. Solutions of the model are examined with emphasis
on characteristics of non-Gaussianity and intermittency. In § 5, we consider issues of
numerical implementation and statistical sampling. Detailed comparisons between
the model and DNS are presented in § 6, with generally good agreement (with
tuned parameters to fit separation mean and variance) at three different Reynolds
numbers up to the highest for which detailed information is currently available.
Separate subsections are devoted to moments of the separation distance, moments
of the separation speed, and the p.d.f. of separation distance. It should be noted that
higher moments, the separation speed statistics, and the separation p.d.f., all form
‘independent’ tests of the tuned model. Comparison of separation-distance p.d.f.s
with recent oscillating-grid turbulence experiments also shows remarkable agreement.
Finally, in § 7, we summarize the conclusions and discuss implications for dispersion
modelling in more practical flows with greater complexities.
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2. Background
Relative dispersion is a classic problem in turbulence theory (Richardson 1926;

Batchelor 1952; reviewed by Sawford 2001). Consider two marked particles at posi-
tions x(1)(t) and x(2)(t), with the separation vector defined as

l(t) = x(2)(t) − x(1)(t). (1)

As in Part 1, our main task is to determine how quickly the separation vector between
fluid particle pairs grows (on average) with time from a specified initial separation
distance l0 ≡

√
li li at t = 0. We consider l(t) as a vector stochastic process, with the

p.d.f. denoted by P (l, t). Statistical moments are of primary interest. In particular,
the second moment gives the mean-squared separation as

〈l2〉 = 〈li li〉 =

∫
l2P (l) d3l = 4π

∫ ∞

0

l4q(l) dl, (2)

where in the last equality sign we have integrated over the surface of a sphere of
radius l =

√
li li , and q is the p.d.f. for scalar separation l. For separation scales much

larger than η =(ν3/ε)1/4 (where ε is the energy dissipation rate and ν is the kinematic
viscosity), the evolution of 〈l2〉 should be independent of viscosity. Similarly, for
scale sizes much smaller than L, the details of the large-scale motion should be
unimportant. In the regime where both of these conditions hold, the classical inertial-
range prediction (Richardson 1926; Obukhov 1941a, b) is

〈l2〉 ∼ gεt3 (η � l0 �
√

〈l2〉 � L), (3)

where g is a non-dimensional coefficient known as Richardson’s constant and t is the
elapsed time from when the pair of particles were practically next to each other. The
applicability of this ‘law’ depends on several critical conditions: neglect of viscous
effects; neglect of large-scale advection effects (which just move the particle pair in
bulk together); and loss of memory of the specific initial separation. The time scale
for the memory loss is t0 = (l20/ε)

1/3. Unfortunately, observations of Richardson scaling
are very difficult in both numerical simulations and laboratory experiments because
of their limited Reynolds-number range. The assumptions involved are believed to
hold best in the atmosphere with its vast range of scale sizes; however, atmospheric
measurements are often noisy and affected by the uncontrollability of conditions in
the field. As a result, the value of g is very uncertain, with estimates as low as 0.01
and as high as 4 in the literature (see Sawford 2001).

Because detailed comparisons with DNS of the type reported in this paper are only
possible at modest Reynolds numbers, for practical purposes, say for applications in
the atmosphere, we cannot avoid the need to make rather tenuous extrapolations to
a higher-Reynolds-number range. The key to success for such extrapolations rests
directly on the precision with which the small-scale properties of relative dispersion
can be described, and whether some type of similarity law can be established. The
nature of Reynolds-number dependence is therefore crucial in this investigation.

2.1. Separation velocity and stochastic models

The instantaneous rate of separation defines the separation velocity, i.e.

dl
dt

= u(r), (4)

where u(r) = u(2) − u(1) is the relative velocity between two fluid particles at time t .
Different approaches for the calculation of relative dispersion can be distinguished
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by different prescriptions for the statistics of this relative velocity. In kinematic
simulations, Lagrangian statistics are obtained by tracking the motion of fluid particles
in a modelled velocity flow field with specified Eulerian characteristics. Alternatively,
stochastic models generate sample fluid-particle velocities as random processes, which
can be manipulated to be consistent with prescribed Eulerian statistics of the flow.
In contrast, direct numerical simulations produce ‘exact’ Eulerian fields at each time
instant, which allows the positions of both particles in each pair to be continuously
tracked in time. Notwithstanding its own limitations (especially in the Reynolds
number), DNS can be regarded as the most accurate approach, and has indeed
provided evidence (Yeung 1994; Part 1) of remarkably strong non-Gaussianity in
particle pair separation, which we attempt to model in this paper.

Some of the basic kinematic results for relative dispersion are easy to derive (Borgas
& Sawford 1991). These include the separation covariance tensor

〈li lj 〉 = l0i l0j +

∫ t

0

∫ t

0

〈
u

(r)
i (t1)u

(r)
j (t2)

〉
dt1 dt2 (5)

where the velocity covariance inside the integral can be expressed in terms of the
relative acceleration a(r) = a(2) − a(1), as

〈
u

(r)
i (t1)u

(r)
j (t2)

〉
=

〈
u

(r)
i (0)u(r)

j (0)
〉

+

∫ t1

0

∫ t2

0

〈
a

(r)
i (t ′

1)a
(r)
j (t ′

2)
〉
dt ′

1 dt ′
2. (6)

As mentioned in § 1, in this paper we attempt to account for viscous effects in
dispersion via improved representations of Lagrangian accelerations allowing for finite
correlation times. The ultimate predictive target in the modelling is the behaviour
of the separation distance (including its higher-order moments), rather than the
details of the velocity or the acceleration. Nevertheless, it is encouraging to find
that (see § 6) Lagrangian velocity statistics are also reasonably well predicted. Even
the accelerations, which are, strictly speaking, unphysical when modelled using the
commonly applied Langevin equation for velocity, are in some aspects qualitatively
well represented. This success is in part achieved by using the Eulerian conditional
acceleration (Borgas & Yeung 1998) as part of the model input.

The stochastic model we use is that of a diffusion process in velocity-separation
phase space: namely the Langevin equation for velocity evolution

du
(r)
i = Ai

(
u(r), l, t

)
dt + µ dWi,

dli = u
(r)
i dt, (7)

where dWi ≡ Wi(t +dt) − Wi(t) is a standard Wiener process increment with the
properties

〈dWi〉 = 0, 〈dWi(t) dWj (t)〉 = δij dt, 〈dWi(t) dWj (t
′)〉 = 0 (t 
= t ′). (8)

These equations define a Markov model with continuous trajectories in phase space
(Sawford & Borgas 1994), with unknown drift term A (a function of both velocity and
separation), and unknown coefficient µ for the noise term. In atmospheric science
stochastic models are derived using Eulerian flow-field statistics in a systematic
manner (Thomson 1987, 1990). That approach is also followed here, facilitated by
a simplification, and with a focus on dissipation-range viscous effects to allow com-
parisons with DNS.
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2.2. Quasi-one-dimensional model

Instead of modelling the full separation vector (l) it is easier to focus on its magnitude,
i.e. the separation distance (l). This reduces our modelling task to that for a quasi-one-
dimensional process (Durbin 1980; Durbin 1982; Kurbanmuradov 1997; Borgas &
Yeung 1998). This strategy also has the advantage of avoiding a non-uniqueness
problem discussed in the literature (e.g. Thomson 1990; Borgas & Yeung 1998) for
the relationship between Eulerian velocity p.d.f. and conditional accelerations. The
important variables are now just the instantaneous separation distance and its rate
of change

l =
√

li li , u =
dl

dt
. (9)

(Note that the notation u is chosen for simplicity here; it corresponds to ur in Part 1.)
We refer to the latter as the separation speed. The corresponding quantity in the
Eulerian frame is the ‘longitudinal’ two-point velocity difference, e.g.

∆ru ≡ u1(x1 + l, x2, x3) − u1(x1, x2, x3), (10)

where the spatial increment is taken in the same direction as the velocity component
considered. The moments of ∆ru are the Eulerian longitudinal structure functions,
which are relatively well known. Some of the relevant scaling properties are

〈(∆ru)2〉 ∼




〈s2〉l2, l � η,

CKol(εl)
2/3, η � l � L,

2σ 2
u , l � L,

(11)

where 〈s2〉 = 〈(∂u1/∂x1)
2〉 is given by ε/15ν (assuming local isotropy), CKol is the

Kolmogorov constant in the second-order structure function, and σu is the one-
particle root-mean-square (r.m.s) component velocity. The value of CKol inferred from
experiments (Sreenivasan 1995) and numerical simulations (Yeung & Zhou 1997) is
about 2.1. The different scaling ranges in (11) may be characterized, respectively, as
the dissipation range, the inertial range and the energy-containing range. An estimate
for the large-eddy scale size L based on known results for the scaling of the dissipation
rate (Sreenivasan 1998) can be written as σ 3

u /ε where a numerical coefficient of order
unity is absorbed in the definition. The specification of structure functions in space
corresponds to the spectral information used in kinematic simulations (Malik &
Vassilicos 1999).

It is important that the model satisfies homogeneity and incompressibility which
apply in the numerical simulations. From the definition of ∆ru in (10) above, it follows
that in homogeneous turbulence 〈∆ru〉 =0 for all values of r . This condition also
represents incompressibility because it implies that there is no mean net mass flow
across any arbitrary cross-sectional plane in the solution domain. In general, the local
mass flow induced by a non-zero random instantaneous longitudinal velocity ∆ru

may be considered to be balanced by appropriate velocity components in the plane
orthogonal to the vector r . Because of the quasi-one-dimensional nature of our model,
these velocities in the orthogonal plane do not require modelling. Nevertheless, we
stress that incompressibility is a self-consistent property of stochastic models, provided
that the model yields a zero mean for the Eulerian two-point velocity difference.
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Higher-order moments of ∆ru are also of interest. In particular Kolmogorov’s
4/5th law (Monin & Yaglom 1975) for the third-order structure function says

〈(∆ru)3〉 ∼
{〈s3〉l3, l � η,

− 4
5
εl, η � l � L.

(12)

Moments at yet higher orders are also known (Anselmet et al. 1984; Sreenivasan
& Antonia 1997; Pope 2000), but here we will use only the first four as assumed
Eulerian empirical input for constructing models for Lagrangian trajectories in non-
Gaussian flow fields. In doing so, we also successfully avoid the restriction in current
implementations of kinematic simulation to Eulerian flow fields having a Gaussian
structure. As we show in § 3 below, many of the striking scaling properties of velocity
increments in turbulent flows can be reproduced by fields parameterized by only the
first four moments. Details of the parameterizations are given in the Appendix.

3. Eulerian modelling
3.1. Probability density function transport equation

For a given two-point separation and corresponding velocity increment in space,
an exact p.d.f. transport equation can be derived which relates the velocity spatial
increment p.d.f. to the conditional accelerations (Borgas & Yeung 1998; Pope 2000).
For the quasi-one-dimensional separation distance (Kurbanmuradov 1997) we have

u

l2
∂l2PE

∂l
= −∂aPE

∂u
, (13)

where PE(u; l) is the p.d.f. of separation speed u for given separation l, and a(u; l) ≡
〈u̇|u, l〉 is the conditional rate of change (in time) of the separation speed.

Equation (13) provides a one-to-one correspondence between a and PE , thus
avoiding the non-uniqueness difficulty arising in three-dimensional models. However,
because the conditional acceleration a(u; l) is unknown, this equation is still unclosed.
Borgas & Yeung (1998) proposed a quadratic-form closure in terms of the first four
moments of the velocity increment, in the form

a = α + βu + γ u2, (14)

where the coefficients α = α(l), β = β(l) and γ = γ (l) are functions of the separation.
For reasons explained later (see § 3.2), the distribution of u is truncated beyond the
finite bounds u+ and u− which are to be specified. While (14) is a very good and
simple-to-use approximation of DNS data (Borgas & Yeung 1998), its functional
form does not always guarantee a realizable solution for the Eulerian p.d.f. in (13).
To achieve realizability we propose a more general form

a = α + βu + γ u2 + b(u, l) (u− � u � u+), (15)

where the additional function b(u, l) is to be determined, although empirical evidence
is that it is ‘small’ compared to the leading-order quadratic-form nature. This is
our ‘prior’ assumption which guides our construction of a realizable, approximately
quadratic form, drift term. The formulation is coupled with a quasi-similarity form
PE(u; l) = σ −1f (ϑ; l), where ϑ = u/σ , and σ 2 = 〈u2〉. Substitution of (15) into (13)
leads to the following equation for f (ϑ; l):

2ϑ

l
f + ϑ

∂f

∂l
− ϑ

σ ′

σ
f − ϑ2 σ ′

σ

∂f

∂ϑ
= − 1

σ 2

∂(α + βσϑ + γ σ 2ϑ2 + b)f

∂ϑ
, (16)
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where σ ′ is defined to be dσ/dl. It is useful to partition (16) into two equations, as:

2ϑ

l
f − ϑ

σ ′

σ
f − ϑ2 σ ′

σ

∂f

∂ϑ
= − 1

σ 2

∂(α + βσϑ + γ σ 2ϑ2)f

∂ϑ
, (17)

ϑ
∂f

∂l
= − 1

σ 2

∂bf

∂ϑ
. (18)

which we check, after solution, is consistent with sufficiently small b. This partition
allows for explicit solutions, in part because (17) is effectively just an ordinary dif-
ferential equation in ϑ . If f were strictly self-similar it would be entirely independent
of l, in which case (18) would become

∂bf

∂ϑ
= 0, (19)

so that the correction term b(u; l) vanishes. This property is precisely why the parti-
cular partition of (16) was chosen. Conversely, this implies that non-zero b(u; l) only
occurs with deviations from strict self-similarity, or equivalently to the transition of
the p.d.f. between different scaling ranges: from dissipation range to inertial range,
then from inertial range to large scales. Because such scaling transitions are not
abrupt, b is controllably small and this is demonstrated by example below.

The quadratic-form closure within (17) can now be determined in terms of the first
four Eulerian moments of the velocity increments, which are written as

〈u〉 = 0, σ 2 = 〈u2〉, κ = 〈u3〉, 
 = 〈u4〉. (20)

Solutions for the coefficients in the case of unbounded velocity (|u±| → ∞) are

α̃ = (2λ + 1) + 1 − γ̃ , (21a)

β̃ = 1
2
(2λ + 1)S + (1 − γ̃ )S, (21b)

γ̃ = 1 + 1
3
(2λ + 1)

F − 3 − 3
2
S2

F − 1 − S2
, (21c)

where the parameters α = σσ ′α̃, β = σ ′β̃, γ = γ̃ σ ′/σ, λ−1 = lσ ′/σ , S = κ/σ 3 and F =

/σ 4 are all functions of the separation l. Furthermore, (18) provides the correction
to the drift term needed for realizability in Eulerian statistics. To see this, we note
that for the given quadratic-form closure (21), (17) can be rearranged to

f −1 ∂f

∂ϑ
= − β̃ + (2λ + 2γ̃ − 1)ϑ

α̃ + β̃ϑ + (γ̃ − 1)ϑ2
. (22)

This can be integrated by standard methods (Gradshteyn & Ryzhik 1980, p. 68) to
give

f = ℵ(α̃ + β̃ϑ + (γ̃ − 1)ϑ2)(γ̃+λ− 1
2 )/(γ̃ −1) exp

[
2β̃

∆

(
λ + 1

2

γ̃ − 1

)
arctan

(
β̃ + 2(γ̃ − 1)ϑ

∆

)]
,

(23)

where

∆ =

√
4α̃(γ̃ − 1) − β̃2, (24)

and the normalization factor ℵ = ℵ(l) is determined by numerical integration so that∫ ϑmax

ϑmin

f (ϑ ′) dϑ ′ = 1. (25)
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A necessary condition for a real-valued solution is that γ̃ > 1. From (21c), this
condition corresponds to the inequality F � 3 + 3S2/2, which is usually well satisfied
in dispersion applications. (Note that, as proved in Kendall & Stuart (1969, p. 92),
F � S2 + 1 for any random process.) In addition, by inserting (21) into (24), a sufficient
condition for real solutions is that F � 3 + 15S2/8 + O(S4), which again is not a
significant restriction in practice provided that the Eulerian skewness |S| is small
enough. Indeed, generally |S| � 1/2 so that dissipation range flatness greater than 3.5
is sufficient for real solutions.

Finally, when the realizability correction term, b, is prescribed by the integration in
(18):

b = f −1σ 2

∫ ∞

ϑ

ϑ ′ ∂f

∂l
dϑ ′, (26)

substitution of (22) into (26) gives the realizability correction term (which remains
non-trivial) as

σ −2b =
α̃′ + β̃ ′ϑ + γ̃ ′ϑ2

2λ + 1
− 2

α̃ + β̃ϑ + (γ̃ − 1)ϑ2

(2λ + 1)2
λ′ +

α̃ + β̃ϑ + (γ̃ − 1)ϑ2

2λ + 1

1

f

∂f

∂l
. (27)

With these constructions, it follows that (23) is also a solution of the full transport
equation, (16), which is the sum of (17) and (18) and is equivalent to (13). This
gives a realizable solution for the Eulerian p.d.f., expressed conveniently for both the
Eulerian velocity distribution and the conditional Eulerian acceleration. Moreover,
the solution is, by design, close to having quadratic-form conditional accelerations as
in (15). This solution is shown below (§ 3.3) to give a good representation of DNS
Eulerian properties.

3.2. Probability density function tails and finite velocity range corrections

A key property of the form (23) for the Eulerian velocity increment p.d.f. is that, at
large ϑ , the exponential factor becomes a constant (with arctan(±∞) = ±π/2). This
implies the modelled p.d.f. has power-law tails in ϑ , of the form:

PE ∼ |ϑ |−2(γ̃+λ−1/3)/(γ̃ −1). (28)

This power-law behaviour is in contrast to the one-point velocity p.d.f., which for
isotropic turbulence is close to Gaussian (Jimenez 1998). Gaussianity of the velocity
component, say u

(1)
1 , of a single fluid particle implies that the probability of occurrence

of large u
(1)
1 decreases in the limit exponentially fast in the square of the velocity.

A similar decrease in the tails is expected also for the joint p.d.f. of the velocities
of two fluid particles. Consequently, the power law form in (28) overestimates the
probability of occurrence of very large values of ϑ , which corresponds to at least one
fluid particle velocity component approaching infinite values. To prevent this latter
pathological situation in the model, the power law is truncated at some finite range,
by setting PE(u; l) = 0 for both ϑ > ϑmax and ϑ < ϑmin. In reality, of course, p.d.f. tails
close to Gaussian or to stretched exponential forms (Frisch 1995; Sornette 2000) are
quite common models. However, our assumption here is that truncated power-law
behaviour captures the critical physics and that the precise form of the far tails of
the p.d.f. is not essential.
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For velocities restricted to a finite range, the expressions in (21) can be formally
modified to include several correction terms, as:

α̃ = (2λ + 1) + 1 − γ̃ + ∆1,

β̃ = 1
2
(2λ + 1) + S(1 − γ̃ ) + 1

2
∆2,

γ̃ = 1 + 1
3

∆3 − 3
2
S∆2 − 3∆1

F − 1 − S2
+ 1

3
(2λ + 1)

F − 3 − 3
2
S2

F − 1 − S2
,




(29)

where

∆m = [ϑm(α + βϑ + γϑ2)f ]ϑmax
ϑmin

(30)

for each of m = 1, 2, 3, and ϑmin is obtained for chosen ϑmax by the nonlinear equation

[(α + βϑ + γϑ2)f ]ϑmax
ϑmin

= 0. (31)

In principle, ϑmax can be treated as a parameter to be specified based on knowledge of
Eulerian statistics, or used as a free parameter to tune the model results for best agree-
ment with DNS or experiments. However, in our calculations, provided the magnitudes
of ϑmax and ϑmin are large enough, the correction factors ∆1 and ∆2 are generally
small. The main exception (based on calculations reported below) is the case when the
Eulerian flatness factor exceeds about seven. This is expected to occur only for the very
smallest separations, at the largest Reynolds numbers, and is only relevant for short
times in Lagrangian evolutions. In other words, in most situations, the finite-range
correction terms are small and can be neglected. Indeed we use the simpler explicit
approximation (21) for the rest of the paper, with the caveat that neglect of finite-
range correction terms may be a factor in the under-prediction of flatness factors in
the Lagrangian results at early times for small initial separations.

3.3. Eulerian results and comparison with DNS

Here, we present some sample results for the Eulerian quantities described in the two
preceding subsections. Figure 1 shows modelled Eulerian velocity p.d.f.s at Taylor-
scale Reynolds number (Rλ) approximately 230, averaged in time over the length
of a 5123 simulation in DNS (Part 1). The separation distance l is varied from
the dissipation to energy-containing ranges: the smallest l corresponds to one grid
spacing, whereas the largest value is half of the length of the solution domain (and
about three times the integral length scale of the turbulence). The data are shown
for ϑ = u/σ between +5.5 and −5.5, corresponding roughly to ϑmin and ϑmax used
in the rest of the paper. It can be seen that the modelled p.d.f.s agree well with
non-Gaussian and negative skewness properties for small separation, but are trending
to Gaussian for large separations. The scale size (l) which is closest to inertial range
is the case l/η = 98, for which the p.d.f. is seen to be mildly non-Gaussian, with a
slight but significant negative skewness.

Corresponding results for conditional acceleration are shown in figure 2. The results
here are close to the simple quadratic form proposed in Borgas & Yeung (1998, figure 6
therein) without the realizability correction term b(u; l) as introduced in this paper.
Thus, the results also represent reasonably well the appropriate DNS data reported
in Borgas & Yeung (1998, figure 5 therein). However, it is interesting to note that, for
large separations, the realizability correction gives a flatter profile for the conditional
acceleration at large negative u, but a steeper profile at large positive u. The DNS
data show rapid fall-off at the extreme tails, perhaps affected by sampling error.
This discrepancy in the tails at large separation suggests that a separation-dependent
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Figure 1. Eulerian p.d.f.s for the longitudinal velocity increment as a function of separation,
at Rλ = 230; generated from the modelled transport equation (16).

Figure 2. Eulerian conditional accelerations given the longitudinal velocity increment,
corresponding to the p.d.f. results in figure 1.
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Figure 3. Eulerian p.d.f.s for the longitudinal velocity increment at a fixed separation of
l0/η = 2 corresponding to DNS data at Rλ = 230 on a 5123 grid. DNS data (open diamonds)
are compared with model (crosses) and with a Gaussian p.d.f. (dashed line). The approximations
for faster than power-law cutoff are shown with solid vertical lines. The DNS tails beyond
u/σ = ±15 are lumped into the last bin.

truncation, with say ϑmax(r) → ∞ as r/η → ∞, may be needed to capture the large-scale
Gaussian limit more accurately.

Figure 3 shows a direct comparison between model and DNS, for the velocity
p.d.f. at Rλ = 230 and l/η =2. At this small separation within the dissipation range,
where non-Gaussian effects are strongest, the two-point velocity difference is nearly
proportional to the velocity gradient, which has intermittent behaviour exhibited in
a wide tail. The model is seen to reproduce DNS results closely within ±5 standard
deviations. However, it is also clear that the power-law tail of the model overestimates
the likelihood of large-amplitude separation velocities. For reasons explained in § 3.2,
we truncate the model p.d.f. at {ϑmin, ϑmax} = {−5.5, 5.5}, respectively.

The sensitivity of the truncation for Eulerian properties is mild, so that we are
free to choose widely even up to the point of no finite truncation. However, the
Lagrangian properties are sensitive to the truncation and some Lagrangian trajectories
cluster around large separation velocities, up to the point that very rapid sustained
separation is possible. The flexibility of robust Eulerian properties, insensitive to the
specific bounding separation velocity, allows effective control of the rapid acceleration
process for Lagrangian trajectories and permits the genesis of the highly non-Gaussian
behaviour we are trying to model. In the same context, an inappropriate Eulerian p.d.f.,
say with Gaussian-like tails for large velocities (and exponentially small frequencies),
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will over-control the rapid separation process and prevent the genesis of highly non-
Gaussian behaviour. In fact, this is precisely the case evident from previous stochastic
models.

In summary, the Eulerian properties are efficiently parameterized by the current
corrected-quadratic-form model. The p.d.f. of Eulerian separation velocities and the
conditional-mean-acceleration are derived as simple functions of the conditioning
velocity and separation scale, with prescribed variance, skewness and flatness. The
form of these solutions agrees well with the DNS Eulerian statistics, and the simple
functional forms facilitate the development of stochastic models to address the pro-
blem of predicting Lagrangian statistics, which is the main object of relative dispersion
study.

3.4. Flow structure: straining and streaming regions

In view of recent interest in the kinematic simulation approach (Malik & Vassilicos
1999), a brief discussion is useful on how spatial structural elements in KS are repres-
ented by Lagrangian stochastic models. The three major structural patterns recognized
in KS are: straining regions, where instantaneous streamlines converge in one direction
and diverge in another; streaming regions, where streamlines are nearly parallel; and
finally eddying regions, where recirculating streamlines indicate local rotation of fluid
elements. In our model, straining regions are characterized by large positive values for
u corresponding to diverging streamlines where particle pairs separate, while negative
values of u indicate converging streamlines where particles approach each other.
Because of incompressibility, converging and diverging streamlines generally form a
pair (at a hyperbolic point) and thus occur with similar frequency (this explains the
similar ‘flaring’ of the p.d.f. at either large positive or negative strain rates). Streaming
regions where particle pairs mainly move together are represented by values of |u| of
small magnitude, whereas the highly-rotational and eddying regions are represented by
rapid changes in the direction of the separation vector, rather than in the magnitude,
so again |u| is small. The dominant dynamical process for relative dispersion is
clearly high-u straining. Together with the ergodic hypothesis for turbulent flow, our
detailed description of the Eulerian velocity p.d.f. ensures that the spatial distribution
of ‘straining’ and ‘streaming’ regions is faithfully represented. The use of Eulerian
velocity structure functions as model input also allows for non-Gaussianity of the
small scales, and is an improvement over a Gaussian flow field, where the occurrence
of flow regions with high strain rate would be grossly under-represented.

4. Lagrangian modelling
4.1. Diffusion in velocity phase space

Quasi-one-dimensional models of dispersion based on a Langevin-type equation for
the velocity (7) can be written in the form

du = A(u, l) dt + µ(l) dW,

dl = u dt, (32)

where A(u, l) is a drift term, and µ is a scale-dependent diffusion coefficient. In terms
of the Thomson (1987) stochastic model approach, the drift term is constrained by the
Eulerian flow statistics and, in fact, is closely related to the conditional accelerations
(15). The Markov stochastic model formulation is best approximated at high Reynolds
number and for time increments substantially larger than the Kolmogorov time scale
(τη =

√
ν/ε), and spatial increments somewhat larger than η. In this paper, we attempt
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to adapt the model to describe diffusion in velocity phase space with explicit relaxation
processes due to viscous forces as parameterized by the scale-dependent stochastic
noise amplitude µ(l). This adaptation is contrived, but is sufficiently flexible and
constrained to lead to useful model development as demonstrated by results obtained
below.

In the limit of particles far apart, and which move almost independently of each
other, the scale dependence of µ(l) is expected to be relatively weak. It is thus
reasonable to let µ(l) approach a constant, i.e.

µ = µ(l) → µ∞ as l/η → ∞. (33)

Classical inertial-range reasoning for Lagrangian velocity structure functions (see
Sawford 2001) gives

〈(v(t + τ ) − v(t))2〉 ∼ C0ετ, (34)

where v is one component of a single fluid-particle velocity and C0 is a constant. This
then implies that µ∞ = (2C0ε)

1/2, at least in the high-Reynolds-number limit. This
is because for very small time increments, the change of separation velocity (when
l is large) is dominated by the difference between two independent single particle
motions. The constant C0 is important in Lagrangian turbulence theory and plays
an equivalent role to the Kolmogorov inertial range constant in the Eulerian second-
order structure function. Recent estimates (Sawford & Yeung 2001; Yeung 2002) put
C0 in the range between 6 and 7. However, at the moderate Reynolds numbers typical
in DNS, we shall let the corresponding model coefficient (denoted by C̃0) vary with
Reynolds number, with C0 itself taken as the asymptotic value.

In the limit of small separation, viscous effects smooth out sharp spatial gradients
and make the two-point difference in acceleration vanishingly small. This suggests
that a series expansion of the type µ = µ1l +µ2l

2 + . . . (where µ1, µ2 are new model
parameters) may be applicable. In addition, we may expect that for larger values
of l/η, viscous effects would fall off exponentially fast. We use an expression which
satisfies these expectations, as

µ = (2C̃0ε)
1/2{1 − exp[−(µ1l/η

√
2C̃0)

m]}1/m, (35)

where m is an interpolation parameter that governs how quickly the transition between
dissipation range and large-scale behaviour occurs with increasing l/η.

4.2. The drift term

Given the stochastic forcing, the drift term in (32) can be determined with Thomson’s
well-mixed argument (Thomson 1990; Kurbanmuradov 1997): the stochastic model
(32) corresponds to the Fokker–Planck equation (Gardiner 1985, p. 96) with drift
term A(u, l)

∂P

∂t
+ u

∂P

∂l
= −∂AP

∂u
+ 1

2
µ2 ∂2P

∂u2
(36)

for the transition p.d.f. P (u, l, t; u0, l0, t0), of separation distance l and its time deriva-
tive, u. The Eulerian counterpart of this equation (Thomson 1990; Kurbanmuradov
1997; Borgas & Yeung 1998) is a modelled transport equation of the form

u

l2
∂l2PE

∂l
= −∂APE

∂u
+ 1

2
µ2 ∂2PE

∂u2
(37)
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Figure 4. Drift term for the stochastic equation as a function of longitudinal velocity
increment and for various fixed separations, at Rλ = 230. The large separation limit approaches
the linear drift term for particles moving independently.

for the Eulerian velocity p.d.f., PE(u; l). Comparison of this with the exact p.d.f.
transport equation (13), leads to the constraint

∂(A − a)PE

∂u
= 1

2
µ2 ∂2PE

∂u2
, (38)

which may be integrated with respect to u to give the relationship

A(u, l) = a(u, l) + 1
2
µ2 ∂ lnPE

∂u
. (39)

Using the Eulerian parameterization derived for PE (based on (23) for f ), we obtain

A(u, l) = a(u, l) − 1
2
µ2

β + 2
(
γ − 1

2
σ ′/σ + 1/l

)
u

α + βu + (γ − σ ′/σ )u2
. (40)

In other words, the drift term can be explicitly related to the conditional acceleration
a(u, l) which is in turn evaluated using the quadratic closure in § 3.1 together with the
realizability correction b(u, l). The drift term calculation allowed by these expressions
is quite efficient. This is useful for numerical implementation because, to capture the
highly non-Gaussian features that we examine, it is necessary to compute a large
number of samples with independent stochastic-model realizations.

Drift terms computed according to the models above are shown in figure 4, for the
same Reynolds numbers and spatial separations as for the conditional acceleration
shown in figure 2. Choices for additional model parameters are µ1 = 0.7, m = 1.8
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and C̃0 = 9. This high value of C̃0 (higher than the asymptotic limit C0 ∼ 6 − 7) is a
consequence of the collective choice of all interpolation parameters in (35). We have
chosen here to focus on the small-scale properties of the relative dispersion process
at finite Reynolds number. Thus, because the value of C̃0 primarily affects large-time
results by altering the modelled Lagrangian integral time scale, and it does not have
much impact on statistics in the dissipation range, there is no need to better para-
meterize large-scale properties. In figure 4 we can see that, overall, the drift term
deviates substantially in shape from the quadratic-form conditional acceleration and
is far more skewed. This distortion in form is also markedly non-monotonic in respect
of scale size l/η, being most pronounced for l/η = 98, which is nominally in the inertial
subrange. In the limit of large separation, the model is, in principle, compatible with
an unbounded Gaussian velocity p.d.f. as the motions of particles far apart become
independent. Nevertheless, because we truncate the p.d.f. to a fixed finite range (§ 3.2),
significant deviations are still expected, and are indeed seen in the A(u, l) curve, with
undulations about the asymptotic straight line with negative slope.

5. Numerical implementation
Numerical methods in our modelling are relatively straightforward. First, the initial

separation is assigned and, for each realization, an independent initial random
separation speed is drawn from the appropriate Eulerian probability distribution.
Each trajectory is integrated in time using adaptive time-stepping, which helps ensure
numerical stability. Restriction of separation speed to a finite range also helps ensure
that the model is stable and free of singular behaviour due to large separation speeds.

The initial particle-pair separation speeds are chosen randomly according to the
Eulerian p.d.f. parameterized in (23). We use a standard procedure for drawing random
variables based on the cumulative distribution function. For a given separation
distance l we define

F (ur ; l) =

∫ ur

−∞
f (v; l) dv, (41)

which is bounded between 0 and 1. A sample of a random variable, say χ , uniformly
distributed between 0 and 1 is first drawn by calling a random number generator
routine. The corresponding value of the initial velocity (u0) is then obtained by
solving F (u; l) = χ . This last step can be carried out easily by interpolation based on
tabulated function values of F (u; l) for l equal to the initial separation l0.

The discretized form of the equation system (32) can be written as

un+1 = un + A(un, ln)�t + µn

√
�tξn,

ln+1 = ln + un�t.

}
(42)

where �t is the time increment between tn and tn+1, and ξn is a Gaussian random
variable of zero mean and unit variance. A simple ‘reflective’ condition is used to
restrict the velocity to a finite range: e.g. if un+1 from (42) falls outside the range
(umin, umax) it is just recalculated with a sign change in either or both the drift term
and the random term (first the drift term, then the random term, then the two together
stopping when un+1 is in range).

The size of time step �t must be chosen carefully. It is clear that, in order to resolve
the small-scale dynamics, �t should be much smaller than the Kolmogorov time scale
τη. Strong intermittency at early times and for small initial separation also makes
this requirement more demanding. On the other hand, at later times, as separation
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statistics evolve on much longer time scales, a larger �t can be used (which helps
reduce CPU costs). Consequently, we use an adaptive scheme which gives a small �t

at earlier times, but larger �t at later times or when the separation distance for a
given particle pair has become large. Specifically, we have

�t =

{
0.01τη tn � 20τη,

0.01τl tn � 20τη,
(43)

where τl ≡ σ 2(l)/ε is a turbulence time scale associated with the instantaneous separa-
tion distance l. This time-stepping strategy recognizes that (at least for the smallest
initial separations in this paper, l0/η = 1/4) the critical non-Gaussian dynamics occurs
within the first 20 Kolmogorov time scales. The numerical factor of 0.01 times the
relevant evolution time scale is typical for stochastic models, and tests have shown
that it is adequate in our work. We also allow �t to be adjusted suitably in order to
produce output statistics at regularly spaced time intervals.

The use of very small �t at early times, as noted above, is closely related to the
need to avoid the occurrence of singularities in the model implementation. Simple
stochastic equations with quadratic drift terms are known to give rise to singular
behaviour with infinite solutions in finite time (Gardiner 1985), which in our case can
give infinitely large Lagrangian velocities if a modelled Eulerian p.d.f. with unbounded
velocity were adopted. If a singularity begins to form, extremely small time steps must
be used to resolve the situation numerically; overall this tends to make the modelling
more difficult. However, as discussed in § 3.2, we are able to avoid this difficulty by
imposing finite bounds on the velocity. We emphasize that this does not affect the
ability of the model to reproduce non-Gaussian aspects of relative dispersion.

To obtain reliable statistical results from the simulated trajectories, the number of
independent particle-pair samples (N ) must be sufficiently large. The estimation of
model statistical sampling errors, with respect to sample size N , is similar to that
for a large number of particles and particle-pairs in DNS (Part 1, § 2.3). Stochastic
model calculations with N as large as 106 (used for the estimation of the separation-
distance p.d.f.s) are possible on desktop personal computers without the need for any
high-performance computer platforms.

6. Model results and comparisons
In this section, we evaluate the performance of our new stochastic model, primarily

by comparison with DNS for moments of the separation distance and the separation
speed. We also discuss the shape of the separation distance p.d.f., in the light of
classical Richardson scaling and some recent results from experiments. The DNS
data are those in the companion paper (Part 1) on stationary isotropic turbulence at
three Reynolds numbers, Rλ 90, 140 and 230 simulated on grids from 1283 to 5123.
Initial separations range from 1/4 of a Kolmogorov length scale to longer than one
integral length scale. The most demanding quantities for the model predictions are
generally higher-order moments at relatively early times when intermittency is strong,
and especially for small initial separations. The chosen parameters from (35), µ1, m

and C̃0, are given in table 1. The values of these parameters are obtained by tuning
the results for optimal agreement with DNS. All of the model parameters shown in
table 1 show a strong and monotonic dependence on the Reynolds number. We show
results explicitly for Rλ-90 and 230, but include Rλ-140 as an intermediate case in
plots that illustrate Reynolds number trends.
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Grid 1283 2563 5123

Rλ 89 141 230

µ1η/
√

ε̄ 0.5 0.53 0.69
m 1.0 1.25 1.75
C̃0 7.0 7.5 9.0
umax/urms 3.8 4.3 4.8

Table 1. Lagrangian model parameters.

Figure 5. Statistical confidence limits for the evolution of skewness of the separation distance.
These limits are computed using the Student’s t test applied to 10 model ensembles of 105

realizations, for the Rλ = 230, l0/η = 1/4 case.

For meaningful comparisons between DNS and stochastic modelling, it is clear that
each must be implemented with sufficient sample size to ensure reliable statistics. In
Part 1 statistical uncertainty in DNS was quantified via confidence intervals estimated
by dividing the data into several subensembles. In figure 5, we show the results of a
similar analysis, for the skewness of the separation distance at Rλ = 230 with initial
separation l0/η =1/4. A Student’s t-test is used to evaluate 90% confidence intervals,
which are seen to be quite small. As suggested by this figure (and figure 1 of Part 1),
the sampling variability in the stochastic model is substantially smaller than that
observed from the DNS. The reason for this is that the stochastic model is for an
ideal stationary system with statistics strictly independent of time, whereas in DNS,
‘stationarity’ is attained only in the sense of time averages taken over a relatively long
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time interval. Indeed, in Part 1 we noted that during the Rλ = 230 simulation (where
Rλ itself is a time average), the space-averaged energy dissipation varies in time by
up to 80%, while instantaneous Rλ ranges from 190 to 250. In principle, sampling in
DNS can be improved by making separate runs which are non-overlapping in time,
but at present this is too expensive. Lesser statistical variability and better efficiency
in allowing large numbers of realizations are favourable attributes of the model.

6.1. Moments of separation distance

The most important test of the model is whether the basic statistics of the separation
distance are predicted well. In figure 6, we show information on the first four moments
of the separation (as the mean, r.m.s, skewness and flatness) at Rλ = 90, compared
directly with DNS. Clearly, except for some small differences at intermediate times,
very good agreement is obtained. The mean and r.m.s are overall measures of how far
apart the particle pairs become as time evolves, whereas skewness and flatness factors
are quantitative measures of the shape of the probability distribution. The highly
non-Gaussian nature of relative dispersion even at this modest Reynolds number
has been noted before in the literature (Yeung 1994; Malik & Vassilicos 1999). It is
especially encouraging to note that parameters in the present model can be tuned
to reproduce this behaviour, which (in terms of large skewness and flatness factors)
is most prominent at intermediate diffusion times for particle pairs of small initial
separation. This success is a substantial improvement over most previous stochastic
models (e.g. Heppe 1998) which were unable to capture higher-order statistics with
sufficient accuracy. Effectively, we have shown that previous limitations discussed in
the literature (Malik & Vassilicos 1999; Flohr & Vassilicos 2000) are not an inherent
failure of stochastic models, but instead can be overcome by accounting for the
behaviour of Eulerian velocity statistics in a careful manner (as in § 3), in particular
accounting for fast separation speeds properly.

The large-time behaviour seen in figure 6 can be deduced analytically by making
two assumptions. First, as the particles in each pair move far apart, their motions,
and ultimately displacements, become mutually independent. In other words, the
mean-square separation becomes twice the mean-square displacement of a single fluid
particle which follows an asymptotic diffusive limit (Taylor 1921). We obtain

〈l2〉 = 3〈l21〉 ≈ 12σ 2
u TLt (t � TL), (44)

where TL is the Lagrangian integral time scale based on the single-particle velocity
autocorrelation. Secondly, as shown in Yeung (1994), the asymptotic form of the
p.d.f. of l can be deduced by assuming that all coordinate components of the vector l
become statistically independent and Gaussian. The first moment of this p.d.f. gives

〈l〉 ≈ 4

√
2

π
σu

√
TLt (t � TL), (45)

whereas the corresponding skewness and flatness factors are about 0.49 and 3.1
respectively. The model is seen to successfully reproduce these limits.

Similar comparisons are made in figure 7, at higher Reynolds number for Rλ = 230
corresponding to DNS results at the highest grid resolution given in Part 1. Stronger
intermittency at this higher Reynolds number leads to greater uncertainties in the
DNS data for skewness and flatness factors. With allowance for this limitation in DNS,
it can be said that, overall (albeit again with some tuning of the model parameters),
roughly the same level of agreement as in figure 6 is achieved. This suggests clearly
that Reynolds-number trends are captured well by the model.
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Figure 6(a, b). For caption see facing page.

It may be noted that at Rλ = 230, the initial flatness factor appropriate for the
Eulerian flow field is quite large (over 7), and that the p.d.f. is stretched out relatively
wide. As a result, at this higher Rλ, truncation of Eulerian velocity distribution
to a finite range introduces greater errors. In turn, this leads to some systematic
discrepancies at early times, where the fourth moment of the separation distance is
under-predicted. The rapid loss of memory, however, leads to adequate Lagrangian
modelling over most of the relevant time span.
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Figure 6. (a) Mean separation distance for various initial separations at Rλ =90 (corre-
sponding to 1283 simulation); (b) root-mean-square separation distance; (c) skewness of the
separation distance; and (d) flatness of the separation distance. In (a) and (b) the initial
separation asymptote is evident at the left, and in (c) and (d) the curves generally increase
with decreasing initial separation. Model and DNS (1283) results are shown as solid lines and
dashed lines, respectively.

To understand better the model representation of Reynolds-number dependence,
we show in figure 8 data for three different Reynolds numbers, on the skewness
and flatness of l with initial separation fixed at l0/η = 1/4. These plots show that



146 M. S. Borgas and P. K. Yeung

Figure 7(a, b). For caption see facing page.

as Reynolds number increases, the Lagrangian intermittency becomes stronger (with
higher skewness and flatness). Furthermore, peak intermittency occurs earlier in time
(even on a time scale normalized by τη). Both of these trends agree with those observed
in DNS (Part 1).
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Figure 7. As for figure 6, but for Rλ = 230 corresponding to 5123 DNS: (a) mean relative
separation distance at Rλ =230; (b) root-mean-square separation distance; (c) skewness of the
separation distance; and (d) flatness of the separation distance.

6.2. Moments of separation speed

As a further check on model behaviour we now examine the statistics of the
Lagrangian separation speed. The strategy of tuning the model parameters for optimal
agreement for the statistics of separation distance leaves the separation speed statistics
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Figure 8. (a) Skewness of separation distance for three different Reynolds numbers (�,
Rλ = 90; �, 140; �, 230) for fixed initial separations of l/η = 1/4. (b) Similar to (a), but for
flatness of the separation distance.

as a stricter test of the model. Good agreement for the separation speed, especially
in its higher-order moments, is indeed more difficult to achieve, in part because it is
more intermittent than the separation distance.
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In figure 9, we show comparisons with DNS at Rλ = 230 for the mean, r.m.s. and
skewness and flatness factors of the separation speed, u. Because of the accelerating
nature of the separation process, the mean separation speed is positive except at
t = 0. Its value increases steadily with time until large-time behaviour gradually sets
in (which occurs earlier for larger initial separations). Since 〈u〉 =d〈l〉/dt , it is clear
that asymptotic t1/2 behaviour in 〈l〉 (see (45)) implies a t−1/2 decrease in 〈u〉. It
can be seen that the model follows the DNS data trend quite well, except that the
eventual large-time decrease appears to occur earlier than expected, which may be
due to uncertainties in large-scale parameters such as the Lagrangian integral time
scale TL.

In figure 9(b), it can be seen that the model shows good agreement with DNS in
〈u2〉1/2 overall. However, some ‘wiggles’ at intermediate times in the data for the two
smallest initial separations are evident. This suggests that the model in the dissipation
range is causing the velocity to accelerate too fast, so that the resulting Lagrangian
velocity increment overshoots DNS values before it is forced to relax back into
approximate inertial range behaviour. A higher-order model is probably required to
improve upon this feature. However, because the separation is the time integral of the
velocity, the overall separation at later times is not strongly affected by this velocity
anomaly, which is essentially limited to the first 20 Kolmogorov time scales of the
dispersion process.

In figure 9(c, d), it can be seen that, except perhaps for the flatness at early times,
the model is capable of following the trend for the development of non-Gaussian
characteristics in time. The level of quantitative agreement reached for these moments
is somewhat less optimal than that achieved for the separation distance (figure 7).
However, this is not surprising, since stronger intermittency in the separation speed
implies greater uncertainties for higher-order moments. In DNS, the use of a finite
number of particle pairs also introduces significant errors in statistical sampling.
Allowing for these non-ideal factors, the agreement we demonstrate here can be
considered to be quantitatively adequate.

6.3. Separation p.d.f. and Richardson scaling

Although knowledge of the first four moments of the separation distance is sufficient
for many practical purposes, it is also useful to make comparisons for the separation
p.d.f., which has long been recognized to have a fundamental role (Batchelor 1952).
This p.d.f. was originally referred to by Richardson (1926) as the distance-neighbour
function, and has been measured in a laboratory experiment by Ott & Mann
(2000).

Figure 10 shows the separation p.d.f. at different times for Rλ = 230 and l0/η = 16.
This is the case of the highest Reynolds number and intermediate initial separation
in the DNS, corresponding to optimal conditions for inertial-range behaviour. The
results here can be compared with DNS data similar to those in figure 8 in Part 1,
except for a different normalizing scale for the separation distance. At t = 0,
the p.d.f. is a delta function at unity. Subsequently, it stretches out with the
tails reaching very large values before eventually relaxing back to a form which
corresponds to l becoming the magnitude of a vector with three independent Gaussian
Cartesian components. It can be seen that these trends are captured well by the
model.

While the distance-neighbour function is the p.d.f. of the particle-pair separation
vector (l), in isotropic turbulence it is a function, say q(l), of the separation distance
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Figure 9(a, b). For caption see facing page.

(l = |l |) only. It is furthermore related to the p.d.f. of l itself by

P (l) = 4πl2q(l), (46)

where the factor 4πl2 appears by virtue of integration over a spherical surface of
radius l in sample space. Richardson also introduced a model for q(l) in the inertial
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Figure 9. (a) Mean separation speed for various initial separations at Rλ = 230. Thicker lines
show larger initial separations in (a) as indicated in the legend. (b) root-mean-square separation
speed; (c) skewness of separation speed; (d) flatness of separation speed. Solid lines show the
model results, dashed lines for the DNS.

range. It corresponds to a separation-distance p.d.f. of the form

P (l) = A
l2

〈l2〉3/2
exp

[
−B

(
l2

〈l2〉

)1/3]
, (47)
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Figure 10. Normalized model separation p.d.f. for the initial separation l0/η = 16 for the
Rλ = 230 case and various elapsed dispersion times ranging from small (delta-function like),
near inertial (stretched tails), to large time (Gaussian separations). Gaussian separations give
the dashed line for the separation magnitude.

where the numerical coefficients are

A =
32

315

1√
π

(
1287

8

)3/2

, B =

(
1287

8

)1/3

. (48)

Remarkably, Ott & Mann (2000) have suggested that these asymptotic results are
attained in experiments at a relatively modest Rλ ≈ 90. The value of Rλ is the same as
in Yeung (1994) (and one of the cases studied in Part 1). In our results at this Rλ, the
choice of initial separation that gives the best approximation to inertial-range scaling
is that of l0/η = 4 (shown below).

Taken together, (46)–(48) suggest that a test for the Richardson form of the
separation p.d.f. can be made by plotting q(l)〈l2〉3/2 as a function of (l2/〈l2〉)1/3, on
linear–log scales. The best match is expected to occur in a time range where, according
to (3), 〈l2〉 has at least some resemblance to t3 behaviour. Figure 11 shows results
from stochastic modelling. Note that there is a good collapse of the data close to
the Richardson form, roughly in the range 0.2 � l/〈l2〉1/2 � 3, with the best agreement
for the intermediate elapsed dispersion time t ≈ 14τη. However, careful examination
of figure 7(c, d) shows that, for both DNS and modelling, the skewness and flatness
factors obtained in this regime are lower than those of Richardson’s distribution
(which can be deduced analytically from (47) and (48), as 1.70 and 7.81, respectively).
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Figure 11. Scaled p.d.f. of separation distance in a form suitable for comparison with
Richardson scaling. Model results are for l0/η = 4 at Reynolds number Rλ = 90 for intermediate
elapsed dispersion times (which fit t3 growth of the mean square dispersion), showing collapse
onto the Richardson form shown as the dashed line, (48).

A test similar to that in figure 11 was made by Ott & Mann (2000), who assumed
that the mean-square separation strictly follows Richardson’s scaling (3). Given the
rigorous Reynolds number requirements for Kolmogorov scaling in Lagrangian
statistics (Sawford 1991; Yeung 2002), the claim that (3) is attained at Rλ = 90 is
somewhat surprising. One test of (3) is to plot 〈l2〉 − l20 versus time, and look for t3

growth. Figure 12 shows such a plot. The results are similar to those taken from DNS
at a slightly higher Reynolds number (Rλ = 283) by Ishihara & Kaneda (2002), who
also found a limited range of inertial-range-like behaviour. However, there are reasons
why the results in figure 12 should not be interpreted as satisfying Richardson scaling.
If there is robust t3 inertial-range behaviour, then a plot of 〈l2〉 at different Reynolds
number should reveal collapse to the same curve as the Reynolds number increases,
and this limiting curve corresponds to Richardson’s form gt3 for fixed constant g.
In fact, the plots in figure 12 for 〈l2〉 at Rλ = 90 and 230, for the same absolute
initial separation (l0), demonstrate that this is not the case. The curve for lower
Reynolds number fortuitously is ‘tangent’ to t3 nominally in the inertial subrange, but
the separation behaviour for a higher-Reynolds-number flow with the same initial
separation is nowhere near a t3 scaling. This plot shows that the separation process is
not close to an inertial-range limit. The collapse to Richardson-like scaling indicates
that, at a particular Reynolds number, the process satisfies a diffusion equation,
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Figure 12. Growth of model mean-square separation with time, for initial separation
l0/η = 16 at Rλ = 230, and l0/η = 4 at Rλ = 90 (fixed absolute l0). Difference from initial
square-separation shown as solid lines with symbols; dashed lines give the mean-square of l.
Lower Reynolds-number curve approximates t3 growth (parallel to the dashed straight line)
in a spurious inertial range.

but with separation and diffusivity still depending on the initial conditions. Thus,
by choosing the initial-separation parameter to give approximately t3 mean-square
relative dispersion, the overall spatial structure is also tuned to Richardson’s form
(3). It should also be noted (B. L. Sawford, private communication 2002) that this
implies that the effects of initial separation are still strong in the scaling ranges
supposedly being observed. This dependence on initial conditions is in clear violation
of inertial-range arguments necessary for Richardson scaling. These reservations do
not necessarily imply that the value of g given by Ott & Mann (2000) is inaccurate;
but that the true value cannot be unambiguously established at the Reynolds number
in the experiments (nor with current DNS).

It is useful to see how data at higher Reynolds number behave in the context of
approach to Richardson scaling. Figure 13 shows the development of the separation
p.d.f., at Rλ = 230. The initial separation is again four Kolmogorov scales, the value
most suggestive of an inertial range in this case at higher Reynolds number. The
agreement with Richardson scaling again seems outwardly reasonable. Yet, because
of the lack of convergence with Reynolds number demonstrated in figure 12, we
argue that this agreement is just an artefact of dissipation-range effects instead of a
true indication of inertial-range scaling.
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Figure 13. Similar to figure 11, for model results at Rλ = 230 again for the initial separation
l0/η = 4, showing a moderate degree of collapse onto the Richardson form shown as the dashed
line, (48).

7. Conclusions and discussion
In this paper, we have developed and tested a new stochastic model of two-particle

dispersion in isotropic turbulence, tightly coupled with the use of direct numerical
simulations (Part 1). The model is quasi-one-dimensional in nature (see § 2), focusing
on the magnitudes of the separation and relative velocity vectors, thereby avoiding
non-uniqueness difficulties in stochastic model equations for the three-dimensional
vectors. Tests of the model using Lagrangian data from DNS (presented in § 6) show
that the new model is capable of mimicking behaviour encountered in turbulent
relative dispersion. The new model performs substantially better than previous
ones which, although adequate for low-order moments, have been criticized in the
literature as being unable to reproduce strong non-Gaussianity in relative dispersion
in the regime of short diffusion time and small separation (i.e. the dissipation
range). One contribution of this work is a validation of the capacity of stochastic
models to describe turbulent separation processes, even for difficult-to-model viscous
effects.

The search for reasons behind the shortcomings of previous stochastic models has
revealed several critical constraints for modelling the separation process. The first is
the need to capture non-Gaussian behaviour, particularly in the tails, of the Eulerian
separation-speed probability density function. An accurate functional form for this
p.d.f. is necessary for the new stochastic model to be sensitive to the occurrence of large
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separation speeds which correspond to infrequent but significant instances of particle
pairs suddenly accelerating apart within a short time interval. A second requirement
is to formulate a model consistent with two-point statistics of the acceleration condi-
tioned upon the separation speed (Borgas & Yeung 1998). We have found that good
results can be obtained by assuming a power-law fall-off in the tails for large velocities
in the Eulerian separation-speed p.d.f. together with a quadratic-form model for
the conditional acceleration. Essentially, these specifications allow the new model
to describe the observed intermittency of the separation process in a quantitative
manner, at least in the dissipation range where particle-pair separation is also subject
to viscous retardation.

Substantial effort has been made (§ § 3–4) in providing essentially an analytical
formulation of the model, so that Lagrangian dispersion results can be obtained using
efficient numerical implementations (described in § 5). Model results obtained with
appropriately tuned model parameters are seen to provide a very good representation
of relative dispersion, measured not just by the mean separation, but also by the
r.m.s., skewness and flatness factors, as well as the form of the separation probability
density function. The latter, in particular, is found to agree with Lagrangian data
from DNS, as well as with recent laboratory measurements.

As noted in § 6, the success of our stochastic model depends on tuning the values
of several model parameters. This tuning is quite complex, and while not a desirable
feature, it is unavoidable. However, some definite physical meaning can be assigned to
at least one of the tuning parameters, namely the maximum separation speed allowed
for the process at each separation length scale. This velocity (§ 3) is taken to be a
fixed multiple of the r.m.s. value (σ ). The truncation applied to this p.d.f. amounts to
a simple representation for the way in which power-law tails undergo transition to a
faster cutoff, such as exponential decay for a Gaussian distribution. Our motivation for
adopting a simple absolute cutoff is mainly for practical expediency, since the details
of a smooth transition in shape for the tails of the p.d.f. are difficult to implement.
Nevertheless, the chosen values for this Eulerian cutoff parameter seem to work well,
and have played an important role in allowing the Lagrangian model to capture the
extreme non-Gaussian behaviour. As indicated earlier, the present treatment of the
p.d.f. tails is a major improvement over previous models.

Accurate modelling of the dissipation range is essential in this work, because
viscous effects play a substantial role in issues of Reynolds-number dependence. The
latter is, in turn, important because while practical applications are often at very high
Reynolds number, the most reliable and detailed sources of Lagrangian data are direct
numerical simulations at moderate Reynolds number. A recent example of the use of
DNS for stochastic modelling, for single-particle statistics in homogeneous turbulent
shear flow, is provided by Sawford & Yeung (2000, 2001). It is reasonable to expect that
successful performance of stochastic models in the current Reynolds-number range
of DNS will give greater confidence in their performance in inertial-range turbulence
where they are formally more suited. Successful treatment of viscous effects in this
work also suggests that the new modelling approach can be extended to describe the
motion of material fluid particles subject to molecular diffusion (Saffman 1960).

Because Lagrangian inertial-range similarity requires higher Reynolds numbers than
for Eulerian quantities, the procedure for extrapolating our new stochastic model to
arbitrarily large Reynolds number is uncertain. Nevertheless, this work can be taken
as a validation of the stochastic-model approach for describing Lagrangian statistics in
turbulent flow. We now have greater confidence that such models work for ever larger
Reynolds number, and for inertial-range processes in particular. Many of the concepts
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developed here to model viscous effects, including realizability constraints and detailed
parameterization of the conditional acceleration in the p.d.f. transport equation, are
expected to be useful for stochastic modelling in other contexts. One example of
these would, for instance, be single-particle dispersion in the near-wall region of the
atmospheric surface layer. Our work in the present paper has demonstrated that it
is important to have an accurate understanding, either from DNS or experiments, of
the tails of the p.d.f. of Eulerian velocity increments, which depend on the spatial
structure of the flow.
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(NSF, Grant no. INT-9526868) and the Australian Government Department of
Industry, Science and Technology (International Bilateral Exchange Program no. 95/
4358) which have made our collaboration possible. We also thank Brian L. Sawford
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Appendix. Eulerian structure functions
Here we give the details of parameterized functional forms for Eulerian velocity

structure functions up to the fourth order. These can also be viewed as interpolation
formulae covering all values of spatial separation in ways consistent with asymptotic
ranges implied in (11) and (12).

To begin, we always assume that

ε =
σ 3

u

L
, η =

(
ν3

ε

)1/4

(A 1)

and that the first moment is trivial with

〈∆ru〉 =0. (A 2)

For the second moment, we use the parameterization

〈(∆ru)2〉 = 2σ 2
u

(
1 − exp

(
−α2l

η

))4/3(
l4

β2L4 + l4

)1/6

. (A 3)

Notice that for large separations,

〈(∆ru)2〉 = 2σ 2
u

(
1 − L4

6β2

l−4

)
, (A 4)

which ensures a valid spectrum for this velocity field. In the dissipation subrange

〈(∆ru)2〉 ∼ 〈s2〉l2 =
1

15

ε

ν
l2 ∼ 2σ 2

u

(
α2

η

)4/3(
1

β2L4

)1/6

l2, (A 5)

then

1

15

ε

ν
= 2

σ 2
u

L2/3
α

4/3
2 η−4/3β

−1/6
2 = 2

(
σ 3

u

L

)2/3(
ν3

ε

)−1/3

α
4/3
2 β

−1/6
2 ⇒ α

−4/3
2 β

1/6
2 = 30. (A 6)

The dissipation range effects fall off exponentially fast for large values of l/η, leaving
the inertial subrange:

〈(∆ru)2〉 ∼ CKol(εl)
2/32σ 2

u

(
1

β2L4

)1/6

l2/3 ∼ 2β
−1/6
2 (εl)2/3 ⇒ 2β

−1/6
2 = CKol, (A 7)

α
−4/3
2 = 15CKol. (A 8)
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Similarly, for the third moment we have

〈(∆ru)3〉 = 〈(∆ru)2〉3/2

(
(S − S0) exp(−α3l/η) + S

β3L
4

β3L4 + l4

)
, (A 9)

with the dissipation and inertial-range values, respectively,

S0 = −0.55, S = − 4
5
C

−3/2
Kol . (A 10)

For the fourth moment

〈(∆ru)4〉 = 〈(∆ru)2〉2

(
3 + (F0 − F ) exp(−α4l/η) + (F − 3)

β4L
4

β4L4 + l4

)
, (A 11)

with dissipation range values

F0 = 6 + 4(Rλ − 38)/202, (A 12)

and the inertial range value F = 3.2.
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